Single-Cell Phosphospecific Flow Cytometric Analysis of Canine and Murine Adipose-Derived Stem Cells
نویسندگان
چکیده
This study aimed to demonstrate single-cell phosphospecific flow cytometric analysis of canine and murine adipose-derived stem/stromal cells (ADSCs). ADSCs were obtained from clinically healthy laboratory beagles and C57BL/6 mice. Cell differentiation into adipocytes, osteocytes, and chondrocytes was observed for the cultured canine ADSCs (cADSCs) and murine ADSCs (mADSCs) to determine their multipotency. We also performed single-cell phosphospecific flow cytometric analysis related to cell differentiation and stemness. Cultured cADSCs and mADSCs exhibited the potential to differentiate into adipocytes, osteocytes, and chondrocytes. In addition, single-cell phosphospecific flow cytometric analysis revealed similar β-catenin and Akt phosphorylation between mADSCs and cADSCs. On the other hand, it showed the phosphorylation of different Stat proteins. It was determined that cADSCs and mADSCs show the potential to differentiate into adipocytes, osteocytes, and chondrocytes. Furthermore, a difference in protein phosphorylation between undifferentiated cADSCs and mADSCs was identified.
منابع مشابه
Extract of mouse embryonic stem cells induces the expression of pluripotency genes in human adipose tissue-derived stem cells
Objective(s): In some previous studies, the extract of embryonic carcinoma cells (ECCs) and embryonic stem cells (ESCs) have been used to reprogram somatic cells to more dedifferentiated state. The aim of this study was to investigate the effect of mouse ESCs extract on the expression of some pluripotency markers in human adipose tissue-derived stem cells (ADSCs). Materials and Methods: Human A...
متن کاملجداسازی سلولهای بنیادی مزانشیمی از بافت چربی و ریهی موش BALB/c و مقایسهی ایمونوفنوتایپ آنها
Background and Objective: Mesenchymal stem cells are promising sources of stem cells for tissue repair because of their ability to differentiate into different cells, easy proliferation and culture, and immunomodulatory properties. Despite extensive research on the immunophenotype of mesenchymal stem cells, a lack of specific markers comprises challenges for researchers. The aim of this researc...
متن کاملIsolation and Characterization of Human Induced Pluripotent Stem Cells-Derived Mesenchymal Progenitors
Purpose: Isolating human induced pluripotent stem cells (hiPS)-derived mesenchymal progenitors as a new source of mesenchymal cells which can differentiate into different lineages like adipose and bone. Materials and Methods: After 7 days of hiPS1 culture on matrigle coated dishes, spindle like cells around colonies were removed by cell scraper. These cells that had mesenchymal like morphology ...
متن کاملThe Effect of Human Platelet-Rich Plasma on Adipose-Derived Stem Cell Proliferation and Osteogenic Differentiation
Background: The cultured mesenchymal stem cells (MSC) have been used in many clinical trials however, there are still some concerns about the cultural conditions. One concern is related to the use of FBS as a widely used xenogeneic supplement in the culture system. Human platelet-rich plasma (hPRP) is a candidate replacement for FBS. In this study, the effect of hPRP on MSC proliferation and os...
متن کاملDifferentiation of Adipose-derived Stem Cells into Schwann Cell Phenotype in Comparison with Bone Marrow Stem Cells
Objective(s) Bone marrow is the traditional source of human multipotent mesenchymal stem cells (MSCs), but adipose tissue appears to be an alternative and more readily available source. In this study, rat adipose-derived stem cells (ADSCs) were induced to differentiate into Schwann-like cells and compared with rat bone marrow stem cells (BMSCs) for their Schwann-like cells differentiation pote...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017